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Abstract 

We have investigated the phase diagram of Na V:O~ in the coml~sitiot~ range 0.7 z~ x ~ 1.5 and the effect of Na-deficiency 
on the spinoPeierls transition in the quasi-one°dimensional {ID} magnet a'-NaV~O 5. The a'-NaV:Os phase exists in the 
composition range 0.80 .,<_% X ~ l.(~t. The spin°Peierls transition is suppresmd by Na-deficiency and disappears around x ~ 11.97. 
'the Curie-like increase of magnetic susceptibility was obmrved in ¢~'-NaV~O~ at low temperature. Any evidence for a 
magnetic order in t~'-Na,V:O~ has never been obmrved in contrast to the Zn-doped CuGeO~ or SrCu:Oa. The electric 
resi~livity deer¢,~¢~ with Nttodefl¢iency, although t~'°Na,V:O~ remains mmiconductive in O,Sll ~ x ~ lAX), The temperature 
@~nden¢~ o[ conductivity for the Na.deficient sample~ ~ems to be consistent with a variable range hopping in the ID 
~y~lem. °Fl~i~ ~ugge~l~ tll~ll lh~ c~u'rier~ ~re doped into the !D chain by Na°deficiency but do not induce clean metallic ~havior. 
We M~o ~:p, ofl ~t low dh~¢n~i,m~d behavior in the magnetic sumeptibility and a ~ssible spin sin#el state as the ground slate 
m_ N~ ~V~O~ lth¢ qoplla~e), @ l t~7 [~i~cvier Science S,A, 

h?vw,rd~' ~'oNitV:,t:)~: NlIMcticicncy: SpinoP¢ierl~ tran~i|ion: Magnetic ~u~¢ep|ibilfly: 1!3cctfic comluctiviiy 

1. Inln$uetton 

There are many compounds,  so called 
~ium=vanadium bronze, in the Na~V~O system. 
Seven pharos, ~ 111 < x ~ 0.02}. B 10,21 ~ ~' g t1.35}. 
8 10.~5 g ~ g  0.57}, T {x ~ O.(r41, t~' (0.79 g x g lARD, 

11,28 ~x g 1.451 and ~¢ (I.68 g x g  1.82) have been 
rel~rted [1~3]. The Bophase has ~ e n  intensively in- 
vestigated because of its quasioone-dimensional ( I D }  
conducting properties [4,5]. Recently we found the 
spinopeierls transi|ion in ~'oNaV:O~ [6]. This is the 
m2cond e~ample of |he inorganic spin-Pcierls com- 
l~tand following CuGeO~ [TL The schematic crystal 
slruclure of ~ 'oNaV:O~ is shown in Fig. 1. ~'oNaV~O~ 
ct)~stailizes in ;~ ~[~ t:rthothomblc:~ ~' '" cell with space gr~mp 

t~*2-~,N~N'~ ~07 ~/$i?,i~lI, ¢ I~17 Elsevier 5¢i*¢I~'¢e S,A, All ~ighls rescr<ed 
PH St}~2 ~o s)  SSi ~? 10112t 7¢~.q 

P21mn [8], It consists of layers formed by VOs square 
pyramids which share edges and corners. Sodium ions 
are k~:ated in the sites I~tween the layers. There are 
two crystallographic vanadium sites which form two 
kinds of VOs chain (A and B in Fig. I) akmg the 
b-axis and they are assigned to V4'Os and V~'O~ 
chains, res~ctively. Thcrefi~re ot'-NaV20 s is ex- 
a c t ed  to be a quasi-lD spin system because the 
magnetic V ~' O~ chains arc i~flated by the non°mag- 
netic V~'O~ chains in the structure. Actually we 
rcpt~rtcd that the temperature dependence of mag- 
~iclic susceptibility shows a good fit to the equation 
i o r a  S o~ 1/2 antiferrom~tgnetic Heisenberg linear 
chain and furthermore this compound shows the 
spin+Peierls transition at 35 K [0.%i0]. 

Recently a low-dimensional spin system with a spin 
gap and its doping or substitution effect have received 
much attention due to quantum effects of interest. 
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Fig. I+ S¢11c111tlli¢ c+slal sltu¢lllr¢ o l  + ++'-Ni IV+O s pl+ojcclcd ohio 
Ih¢ a+h phm¢ and a+c phm¢° Thc filled ¢i~+¢lcs rcprcscn! Na '  
ions+ The ~qua¢c~ rcprcmcl~l V atoms. The while m~d shaded square 
pyramids show IWO kinds of VO+ pyramids (Iwo c~slallographic 
vanadium sil¢~). A aml B tcpt¢~c111 1h¢ V +° (L and V ( ,  challis, 
t¢~pc¢liv¢iy+ 

and extensive studies have been performed experi+ 
mentally and theoretically. For instance the substitu- 
tion of a small amount of Zn for Cu in the spin-ladder 
compound SrCu+O~ and the spin-Peierls compound 
CuGeO; leads to an antiferromagnetic long-range 
order [I I] or the coexistence of a spin-Peierls state 
with a magnetically ordered state [12-14]. The doping 
effect in a'-NaV~Os is very interesting. The previous 
report demonstrated the existence of Na-non- 
stoichiometry in a ' - N a ~ O s  (the existence of a Na- 
deficient compound) [6]. Sodium deficiency introduces 
non-magnetic V ~' ions in the magnetic V ++ linear 
chain. In the present study we have investigated the 
phase diagram of Na,V:O~ in the composition range 
0.7 ~x  :g 1.5 and the effect of Na-deliciency on the 
spin-Peierls transition in a ' -Na~Os .  In this paper 
we report the magnetic and electric properties of 
a+.Na,V:O~. We also report a low-dimensional be- 
havior in the magnetic susceptibility and a possible 

spin singlet stale as the ground state in Na~+~V20 ~ 
(the ~-phase). 

2. Exper imenta l  

Powder samples of Na,V+,Os were prepared by the 
solid-state reaction of mixtures with appropriate molar 
ratios of NaVO 3, V203 and V20 s [6]. Single ct~t~s 
of a '-NaV20 s were grovm by the self-flux method 
[15]. Single crystals of a'-NaxV20 s were prepared by 
heating a small crystal of stoichiometric a'-NaV20 s 
embedded in a large quantity of the powder sample of 
a '-NaxV2Os in an evacuated silica tube at 650~C for 1 
week. By measuring the magnetic susceptibility, it wa~ 
checked that the composition of the single cr~tals 
were identical to that of powder samples. The mag- 
netic susceptibility was measured using a Quantum 
Design SQUID magnetometer. The electric resistivity 
measurements were made by an ordinary four-probe 
method using single crystals. 

3. Resul t  and  discuss ion 

The composition range of the ot '-phase was 0.80 < 
x g 1.00 in Na+V20 s in the present work, which was in 
agreement with the previous report [2]. This means 
that ot'-NaV20 s shows Na-deficiency but does not 
accommodate excess Na in the structure. Above x 
1.0 the 7/-phase coexisted with the stoichiometric 
a'-NaV:Os and it existed as the single phase around 
.¢ ~ 1.3. The ,/-phase seemed not to have a Na-non+ 
stoichiometric region, which was different from the 
previous results [1]. The compositional dependence of 
lattice constant in lhe ¢~ +. +. s phase is show,i in Fig. 
The ,* and b*axis show a little change while the 
c*axis significantly decreases with an increase of Na° 
deficiency. Since Na ions lie between layers, the Na° 
deficiency mostly affects the interlayer distanc¢. 

The magnetic susceptibility of ~t'-NaV:O~ is r¢!+~° 
tively small comparing with that of other transition 
metal oxides and therefore it is influenced by the 
magnetic impurities accidentally included or a method 
of measurement. We have made an effort to improve 
the quality of the sample. Fig. 3 shows the most 
reliable data of the magnetic susceptibility measured 
using the powder sample. The magnetic susceptibility 
rapidly decreases with decreasing temperature below 
the spin-Peierls transition temperature of 35 K, as 
shown in the inset of Fig. 3. Above 35 K, the magnetic 
stlsceptibility shows a good fit to the Bonnet=Fisher 
curve with J/k~+ ~ 560 K and g ~ 2 [6]. Fig. 4 shows 
the magnetic susceptibility of the powdered ~'-  
Nay:O~ below 80 K. The spin-Peierls transition is 

Na-defictency and vanishes around suppressed by ' " '+  
Na0,,7V:Os. The spin.Peierls transition was very sen+ 
sitive to Na.deficicncy. Mila et al. did not observe the 
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+pinopeiorl~ Iran.qtion in (~'.NaV~O~ [1O]. This co,lid 
he duo to 010 devh}tion from stoichiometry in tIteh 
~amplom, Sodium deficie|tcy introduces nommagn¢tic 
V ~ ' ion.,+ in the magnetic V"' Illlear ehahi~ aI1d Cuts 
th~ ~haii/s. The Cu|'i¢olik¢ increase of nia~nelic su~: 
¢epllbility which wa~ in proportio|ml to Na-deficiency 
was ob~Peed in a '=Na,V=,O~ at low temperature. Any 
evidence for a magnetic order, however, has never 
~en  ob~rved in contrast to the Znodoped CuGeO~ 
or SrCu~O~. This indicates that . '°NaV.O, is an 
ideal I D magnetic system and the magneticinterchain 
interaclkm is ve~ weak, The Curie constant obtained 
from fitting the magnetic su~eptibility to the 
Curie=Weis~ law between 5 K and 15 K is given in 
Fig~ 5 as a function of y in Na, ,V:O~. in this fitting. 
the ol~taincd Wcis~ tem~ratures were in 0 .~ = 1).9 K 
in all ~mples+ The dotted lines represent the y/2 and 
vii2 de~ndenc¢, a~m.,ming free ion with S+ i12 
a~.~.K'ialcd with Na-tmn-~toichiomctry. At first ~he 
Curie ¢o+i~tan~ h~creascs with +, pro t~rtion of y /2  
+rod then y / i2  above y ~ 0,03. The turning lx~int of 
y + |}.03 corrcs~ads to the comlmsitiion at which the 
s+l+imPcierts transition disap~ars+ The introduction of 
a t~on+magnet+c ion into a magnetic linear chain 
a|~t+cts the rang.eric pro~rties in a different manner 
in the spin-Peierlx state and the magnetic I D chain+ 
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Fig. 3. Magnetic susceptibility of (~ '-NaV=,O~ measmed in a lield 
of ! T. The inset shows magnetic susceptibility of o'-Na~O~ in 
the temperature range from 5 K to 700 K. The solid line shows the 
susceptibility derived by subtracting the Curie contribution. 
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Fig. 4. Magnetic ~usceptibility of ¢¢'oNa,V:O~ with ~t+ 0,~}5 - I.(H) 
n~,¢a~tlrcd i|1 ~ tield oi I T in |h,~ t~tlt[~ratutt~ ratine [tom ~ K to 80 
K, The in~, show,, magne,ic +,,usccptihiiily of o,'=Na,V:O, with 
t ~ I,INO - l,|~IL 

resl~ctively. Such an effect may be more remarkable 
in the state with a spin°gap than in tile magnetic 
linear chain without a spin gap. Some theories predict 
that the compositional dependence of the Curie con- 
stant lies between y/4 and y/12 in tile spin+ladder 
system with spin gap [17], 

The electric resistivity of a ' -Na,~O~ was mea- 
sured along the b+axis (the linear chain direction) 
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Fig. 5. Conipositional dependence of Curie constant in (,'- 
Nai.,V,O~. The Curie constant was obtained from Iitting the 
magnetic susceptibility to the Curie-Weiss low between 5 K and 15 
K. The dotted lines represent the y /2  and .v/12 dependence, 
respectively. 
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Fig. 6. Logarithm of the electric conductivity vs. I /T  - t / :  of (~'. 
Na ,V, Os. The inset shows the resistivity of ~ °-Na ~V=,O 5 as a linear 
function of temperature. 

using single crystals. The inset of Fig. 6 shows the 
resistivity of tt'-Na,V, Os as a linear function of tem- 
perature. The resistivity of the stoichiometric sample 
was so high for our apparatus that the manner of 
temperature dependence was hardly determined. The 
resistivity in a'-Na,V.,O.~ decreases with Na-de- 
ficiency but is semiconductive in all samples. The 
temperature dependence of conductivity in Na-defi- 
cleft samples does not obey any activation-type be- 
havior. Fig. (~ shows the plot of the logarithm of 
conductivity ( In , r )  vs. I / T  ~ i,,.,, where one can see a 
linear relation. The temperature dependence of Na- 
deficient samples seems to be consistent with a vliri. 
able range=hopping in the I D system, l'his suggests 
thai the carriers are doped into the I D chain by 
Na-deficieney but do not induce clean metallic behav- 
ior, because an arbitrary small concentration of de- 
fects often leads to localization in a I D material. This 
is a significant polar of difference from the doping 
effect in CuGeO~ and SrCu,O.~ where the doping or 
substitution of another cation for Cu has never re- 
sulted in the carrier doping but a long-range magnetic 
order. 

Fig. 7 shows the magnetic susceptibility of rl- 
Na~.N:O s. The magnetic susceptibility has a maxi- 
mum around II0 K and decreases down to a small 
value at the lowest temperature, which indicates for 
~l -Na~O~ to be a low.dimensional magnetic sys- 
tem. The low magnetic susceptibility at the lowest 
temperature suggests a spin singlet state as the ground 
state. The origin of the anomaly around 110 K has not 
been discovered. That may be due to a trace of the 
Magni~li-phase vanadium oxides included in the sam- 
ple. The structure of ri-NaL.~V, O5 has not been de- 
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Fig. 7, Magnetic ~usceptibillty of ~loNal Nf l )~ me~l~urcd in ~i tttdd 
of I T, 

t~rmined yet and we cannot discuss the observed 
magnetic property in relation to the structure. Fortu- 
nately, we obtained a small single crystal. Studies of 
its structure and physical properties are now in 
progress. 
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