

Journal of Alloys and Compounds 262-263 (1997) 180-184

Effect of Na-deficiency on the spin-Peierls transition in α' -NaV₂O₅

Masahiko Isobe*, Yutaka Ueda

Institute for Solid State Physics, The University of Tokyo, Roppongi 7-22-1, Minato-ku, Tokyo 106, Japan

Abstract

We have investigated the phase diagram of Na V_2O_5 in the composition range $0.7 \le x \le 1.5$ and the effect of Na-deficiency on the spin-Peierls transition in the quasi-one-dimensional (1D) magnet α' -NaV₂O₅. The α' -NaV₂O₅ phase exists in the composition range $0.80 \le x \le 1.00$. The spin-Peierls transition is suppressed by Na-deficiency and disappears around x = 0.97. The Curie-like increase of magnetic susceptibility was observed in α' -NaV₂O₅ at low temperature. Any evidence for a magnetic order in α' -Na V_2O_5 has never been observed in contrast to the Zn-doped CuGeO₃ or SrCu₂O₃. The electric resistivity decreases with Na-deficiency, although α' -Na V_2O_5 remains semiconductive in $0.80 \le x \le 1.00$. The temperature dependence of conductivity for the Na-deficient samples seems to be consistent with a variable range hopping in the 1D system. This suggests that the carriers are doped into the 1D chain by Na-deficiency but do not induce clean metallic behavior. We also report a low dimensional behavior in the magnetic susceptibility and a possible spin singlet state as the ground state in Na_{1,3}V₂O₅ (the η -phase). © 1997 Elsevier Science S.A.

Keywords: $\alpha' = \operatorname{NaV}_2O_3$; Na-deficiency; Spin-Peierls transition; Magnetic susceptibility; Electric conductivity

1. Introduction

There are many compounds, so called sodium=vanadium bronze, in the Na=V-O system. Seven phases, α (0 < x ≤ 0.02), β (0.21 ≤ x ≤ 0.35), δ (0.55 ≤ x ≤ 0.57), τ (x = 0.64), α' (0.79 ≤ x ≤ 1.00), η (1.28 ≤ x ≤ 1.45) and κ (1.68 ≤ x ≤ 1.82) have been reported [1-3]. The β -phase has been intensively investigated because of its quasi-one-dimensional (1D) conducting properties [4.5]. Recently we found the spin-Peierls transition in α' -NaV₂O₅ [6]. This is the second example of the inorganic spin-Peierls compound following CuGeO₃ [7]. The schematic crystal structure of α' -NaV₂O₅ is shown in Fig. 1. α' -NaV₂O₅ crystallizes in an orthorhombic cell with space group P2₁mn [8]. It consists of layers formed by VO₅ square pyramids which share edges and corners. Sodium ions are located in the sites between the layers. There are two crystallographic vanadium sites which form two kinds of VO₅ chain (A and B in Fig. 1) along the *b*-axis and they are assigned to V⁴⁺O₅ and V⁵⁺O₅ chains, respectively. Therefore α' -NaV₂O₅ is expected to be a quasi-1D spin system because the magnetic V⁴⁺O₅ chains are isolated by the non-magnetic V⁵⁺O₅ chains in the structure. Actually we reported that the temperature dependence of magnetic susceptibility shows a good fit to the equation for a S = 1/2 antiferromagnetic Heisenberg linear chain and furthermore this compound shows the spin-Peierls transition at 35 K [6,9,10].

Recently a low-dimensional spin system with a spin gap and its doping or substitution effect have received much attention due to quantum effects of interest,

^{*} Corresponding author. e-mail: isobe@kodama.issp.u-tokyo.ac.jp

Fig. 1. Schematic crystal structure of α' -NaV₂O₅ projected onto the *a*-*b* plane and *a*-*c* plane. The filled circles represent Na⁺ ions. The squares represent V atoms. The white and shaded square pyramids show two kinds of VO₅ pyramids (two crystallographic vanadium sites). A and B represent the V⁴⁺O₅ and V⁵⁺O₅ chains, respectively.

and extensive studies have been performed experimentally and theoretically. For instance the substitution of a small amount of Zn for Cu in the spin-ladder compound SrCu₂O₃ and the spin-Peierls compound CuGeO₃ leads to an antiferromagnetic long-range order [11] or the coexistence of a spin-Peierls state with a magnetically ordered state [12-14]. The doping effect in α' -NaV₂O₅ is very interesting. The previous report demonstrated the existence of Na-nonstoichiometry in α' -NaV₂O₅ (the existence of a Nadeficient compound) [6]. Sodium deficiency introduces non-magnetic V^{5+} ions in the magnetic V^{4+} linear chain. In the present study we have investigated the phase diagram of $Na_xV_2O_5$ in the composition range $0.7 \le x \le 1.5$ and the effect of Na-deficiency on the spin-Peierls transition in α' -NaV₂O₅. In this paper we report the magnetic and electric properties of α' -Na_xV₂O₅. We also report a low-dimensional behavior in the magnetic susceptibility and a possible spin singlet state as the ground state in $Na_{1,3}V_2O_5$ (the η -phase).

2. Experimental

Powder samples of $Na_xV_2O_5$ were prepared by the solid-state reaction of mixtures with appropriate molar ratios of $NaVO_3$, V_2O_3 and V_2O_5 [6]. Single crystals of α' -Na V_2O_5 were grown by the self-flux method [15]. Single crystals of α' -Na $_xV_2O_5$ were prepared by heating a small crystal of stoichiometric α' -Na V_2O_5 embedded in a large quantity of the powder sample of α' -Na $_xV_2O_5$ in an evacuated silica tube at 650°C for 1 week. By measuring the magnetic susceptibility, it was checked that the composition of the single crystals were identical to that of powder samples. The magnetic susceptibility was measured using a Quantum Design SQUID magnetometer. The electric resistivity measurements were made by an ordinary four-probe method using single crystals.

3. Result and discussion

The composition range of the α' -phase was $0.80 \le x \le 1.00$ in Na_xV₂O₅ in the present work, which was in agreement with the previous report [2]. This means that α' -NaV₂O₅ shows Na-deficiency but does not accommodate excess Na in the structure. Above x = 1.0 the η -phase coexisted with the stoichiometric α' -NaV₂O₅ and it existed as the single phase around x = 1.3. The η -phase seemed not to have a Na-non-stoichiometric region, which was different from the previous results [1]. The compositional dependence of lattice constants in the α' -phase is shown in Fig. 2. The *a*- and *b*-axis show a little change while the *c*-axis significantly decreases with an increase of Na-deficiency. Since Na ions lie between layers, the Na-deficiency mostly affects the interlayer distance.

The magnetic susceptibility of α' -NaV₂O₅ is relatively small comparing with that of other transition metal oxides and therefore it is influenced by the magnetic impurities accidentally included or a method of measurement. We have made an effort to improve the quality of the sample. Fig. 3 shows the most reliable data of the magnetic susceptibility measured using the powder sample. The magnetic susceptibility rapidly decreases with decreasing temperature below the spin-Peierls transition temperature of 35 K, as shown in the inset of Fig. 3. Above 35 K, the magnetic susceptibility shows a good fit to the Bonner-Fisher curve with $J/k_{\rm B} = 560$ K and g = 2 [6]. Fig. 4 shows the magnetic susceptibility of the powdered α' - $Na_{1}V_{2}O_{5}$ below 80 K. The spin-Peierls transition is suppressed by Na-deficiency and vanishes around $Na_{0.97}V_2O_5$. The spin-Peierls transition was very sensitive to Na-deficiency. Mila et al. did not observe the

Fig. 2. Compositional dependence of lattice constants for α' -Na₃V₂O₅.

spin-Peterls transition in α' -NaV₂O₅ [16]. This could be due to the deviation from stoichiometry in their samples. Sodium deficiency introduces non-magnetic V^{\dagger} ions in the magnetic V^{\dagger} linear chains and cuts the chains. The Curie-like increase of magnetic susceptibility which was in proportional to Na-deficiency was observed in α' -Na,V,O_s at low temperature. Any evidence for a magnetic order, however, has never been observed in contrast to the Zn-doped CuGeO₃ or SrCu₂O₃. This indicates that α' -NaV₂O₅ is an ideal 1D magnetic system and the magnetic interchain interaction is very weak. The Curie constant obtained from fitting the magnetic susceptibility to the Curie-Weiss law between 5 K and 15 K is given in Fig. 5 as a function of y in $Na_{1=y}V_2O_5$. In this fitting, the obtained Weiss temperatures were in $0 \sim -0.9$ K in all samples. The dotted lines represent the y/2 and y/12 dependence, assuming free ion with S = 1/2associated with Na-non-stoichiometry. At first the Curie constant increases with a proportion of y/2and then y/12 above y = 0.03. The turning point of y = 0.03 corresponds to the composition at which the spin-Peierls transition disappears. The introduction of a non-magnetic ion into a magnetic linear chain affects the magnetic properties in a different manner in the spin-Peierls state and the magnetic 1D chain.

Fig. 3. Magnetic susceptibility of α' -NaV₂O₅ measured in a field of 1 T. The inset shows magnetic susceptibility of α' -NaV₂O₅ in the temperature range from 5 K to 700 K. The solid line shows the susceptibility derived by subtracting the Curie contribution.

Fig. 4. Magnetic susceptibility of α' -Na₁V₂O₅ with $x = 0.95 \sim 1.00$ measured in a field of 1 T in the temperature range from 5 K to 80 K. The inset shows magnetic susceptibility of α' -Na₁V₂O₅ with $x = 0.80 \sim 1.00$.

respectively. Such an effect may be more remarkable in the state with a spin-gap than in the magnetic linear chain without a spin gap. Some theories predict that the compositional dependence of the Curie constant lies between y/4 and y/12 in the spin-ladder system with spin gap [17].

The electric resistivity of α' -Na_xV₂O₅ was measured along the *b*-axis (the linear chain direction)

Fig. 5. Compositional dependence of Curie constant in α' -Na_{1-v}V₂O₅. The Curie constant was obtained from fitting the magnetic susceptibility to the Curie -Weiss low between 5 K and 15 K. The dotted lines represent the y/2 and y/12 dependence, respectively.

using single crystals. The inset of Fig. 6 shows the resistivity of α' -Na₁V₂O₅ as a linear function of temperature. The resistivity of the stoichiometric sample was so high for our apparatus that the manner of temperature dependence was hardly determined. The resistivity in α' -Na_xV₂O₅ decreases with Na-deficiency but is semiconductive in all samples. The temperature dependence of conductivity in Na-deficient samples does not obey any activation-type behavior. Fig. 6 shows the plot of the logarithm of conductivity $(\ln \sigma)$ vs. $1/T^{-1/2}$, where one can see a linear relation. The temperature dependence of Nadeficient samples seems to be consistent with a variable range-hopping in the 1D system. This suggests that the carriers are doped into the 1D chain by Na-deficiency but do not induce clean metallic behavior, because an arbitrary small concentration of defects often leads to localization in a 1D material. This is a significant point of difference from the doping effect in CuGeO₃ and SrCu₂O₃ where the doping or substitution of another cation for Cu has never resulted in the carrier doping but a long-range magnetic order.

Fig. 7 shows the magnetic susceptibility of η -Na_{1.3}V₂O₅. The magnetic susceptibility has a maximum around 110 K and decreases down to a small value at the lowest temperature, which indicates for η -Na_{1.3}V₂O₅ to be a low-dimensional magnetic system. The low magnetic susceptibility at the lowest temperature suggests a spin singlet state as the ground state. The origin of the anomaly around 110 K has not been discovered. That may be due to a trace of the Magnéli-phase vanadium oxides included in the sample. The structure of η -Na_{1.3}V₂O₅ has not been de-

Fig. 6. Logarithm of the electric conductivity vs. $1/T^{-1/2}$ of α' -Na_xV₂O₅. The inset shows the resistivity of α' -Na_xV₂O₅ as a linear function of temperature.

Fig. 7. Magnetic susceptibility of η -Na_{1.3}V₂O₅ measured in a field of 1 T.

termined yet and we cannot discuss the observed magnetic property in relation to the structure. Fortunately, we obtained a small single crystal. Studies of its structure and physical properties are now in progress.

Acknowledgements

The authors thank Mr. Tohoru Yamauchi and Dr. Akihiko Hayashi for valuable discussion, and Miss Chiharu Kagami for help in this experiment. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

References

- M. Pouchard, A. Casalot, J. Galy, P. Hagemuller, Bull. Soc. Chin. Fr. 11 (1967) 4343.
- [2] Y. Kanke, E. Takayama-Muromachi, K. Kato, Y. Matsui, J. Solid State Chem. 89 (1990) 130.
- [3] J.M. Savariault, J.L. Parize, D.B. Tkatchenko, J. Galy, J. Solid State Chem. 122 (1996) 1.
- [4] Y. Kanai, S. Kagoshima, H. Nagasawa, J. Phys. Soc. Jpn. 51 (1982) 697.
- [5] M. Onoda, T. Takahashi, H. Nagasawa, Phys. Status Solidi B 109 (1982) 793.
- [6] M. Isobe, Y. Ueda, J. Phys. Soc. Jpn. 65 (1996) 1178.
- [7] M. Hase, I. Terasaki, K. Uchinokura, Phys. Rev. Lett. 70 (1993) 3651.
- [8] A. Carpy, J. Galy, Acta Crystallogr. Sect. B 31 (1975) 1481.

- [9] Y. Fujii, H. Nakao, T. Yoshihama, et al., J. Phys. Soc. Jpn. 66 (1997) 326.
- [10] T. Ohama, M. Isobe, H. Yasuoka, Y. Ueda, J. Phys. Soc. Jpn. 66 (1997) 545.
- [11] M. Azuma, Y. Fujishiro, M. Takano et al., Phys. Rev. B 55 (1997) R8658.
- [12] M. Hase, N. Koide, K. Manabe, Y. Sasago, K. Uchinokura, A. Sawa, Physica B 215 (1995) 164.
- [13] J.-D. Lussier, S.M. Coad, D.F. McMorrow, D.McK. Paul, J. Phys. Condens. Matter 7 (1995) L325.
- [14] J.P. Renard, K. Le Dang, P. Veillet, G. Dhalenne, A. Revcolevschi, L.P. Regnault, Europhys. Lett. 30 (1995) 475.
- [15] M. Isobe, C. Kagami, Y. Ueda, J. Cryst. Growth (in press).
- [16] F. Mila, P. Millet, J. Bonvoisin, Phys. Rev. B 54 (1996) 11925.
- [17] Y. Iino, M. Imada, J. Phys. Soc. Jpn. 65 (1996) 3728.